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Abstract Limit analysis (LA) is an efficient tool for computing in a direct manner
the ultimate load of a structure made of a perfectly plastic material. The lower bound
static approach amounts to maximize the load factor such that one can find an opti-
mal stress field in equilibriumwith such loading and satisfying strength conditions at
each point in the domain. In the deterministic case, the ultimate load is obtained via
the resolution of a convex optimization problem. When loading or strength proper-
ties are random, the data of such an optimization problem become uncertain. Robust
optimization theory is a branch ofmathematical optimization which aim at finding an
optimal solution of uncertain problems among all possible realizations of the uncer-
tainty within a known uncertainty set. Applying the concepts of robust optimization
to uncertain limit analysis, one may compute a worst-case ultimate load estimate
associated with a given uncertainty set, for instance in the case of uncertain strength
properties or uncertain load cases. This paper discusses how robust limit analysis
problems can be reformulated, either exactly or approximately, into deterministic
problems. In particular, the distinction between static and adjustable robust counter-
parts is introduced. In the former case, uncertain LA problems are replaced with a
deterministic problem with reduced strength properties. In the latter case, additional
optimization variables must be introduced in order to obtain an extended LA problem
in much higher dimension.
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1 Introduction

Limit analysis [13, 22] is a powerful direct method used to estimate the collapse
load of a structure consisting of a perfectly plastic material. The lower and upper
bound approaches of limit analysis are naturally formulated as convex optimization
problems for which given data consist of a known material yield criterion, a known
reference loading and a known geometry [12]. However, in real-world applications,
these parameters may be subject to uncertainty due to factors such as inaccurate
load amplitude or direction, or variations in material strength. As a result, engineers
often aim to design structures that are robust to such uncertainties, meaning that the
collapse load must be safe for all possible combinations of uncertain parameters.

Traditionally, limit analysis has addressed this issue by either assuming a worst-
case scenario for the uncertain parameters or by performing a stochastic analysis in
which random realizations of the parameters are used.While the first approach can be
overly conservative, it can also be challenging to determine the worst-case scenario
in complex loading situations. The second approach, on the other hand, requires
assuming a probability distribution for the parameters and solving a large number
of problems to find the worst-case configuration, which may not be achievable in
practice. General definitions of the probability of collapse have been given in [3,
21], later revisited by [2] using stochastic stress vectors. Various works have also
considered the numerical computation of limit loads in a stochastic setting such as
[23, 28] or [1, 10, 14, 17] for geotechnical applications. For instance, the reader can
refer to [15] for a recent review of slope stability in spatially variable soils.

Alternative approaches have sought to evaluate the robustness or reliability of
structures through non-probabilistic methods. In [19], the authors consider uncertain
limit analysis of truss structures with very similar sources of uncertainties as those
investigated in this work. For this purpose, they used the info-gap decision theory
[4] which is however known to be difficult to apply in practice since robustness
functions are very hard to compute in general. For the very specific case of truss
structures investigated in [19], it can however be computed via the resolution of
a linear programming problem. Similarly, mixed-integer programming approaches
can also be used to compute a worst-case limit load [16] but solving such NP-hard
problems is notoriously difficult and almost impossible for large-scale problems.
Using a chance-constrained programming approach, [25, 26] considered limit anal-
ysis and shakedown theorems under normal or log-normal strength uncertainties for
von Mises plasticity.

In this work, we propose an alternative approach that utilizes the principles of
robust optimization theory [5, 7] to obtain a robust estimate of plastic limit loads
in the presence of uncertainty. This approach allows us to design structures that are
resistant to a wide range of uncertain parameters without relying on conservative
assumptions or computationally intensive analyses. More precisely, uncertain limit
analysis problems are formulated in the case of uncertain strength properties. A def-
inition of the worst-case limit load is given using concepts of robust optimization
theory. Then, in order to obtain computationally tractable formulations, different
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decision rules are introduced, in particular so-called static and affinely adjustable
formulations. Static concepts are then applied to the definition of robust strength
conditions and illustrated on the case of a Mohr-Coulomb criterion with uncertain
cohesion and friction angle. Finally, the resolution of robust limit analysis at the
structure scale is discussed for the case of strength uncertainties and loading uncer-
tainties.

The manuscript is organized as follows: Sect. 2 introduces robust formulations of
limit analysis theory in the case of strength uncertainty; Sect. 3 details the derivation
of tractable robust counterparts of uncertain strength constraints arising in the previ-
ous formulations; Sect. 4 is devoted to the resolution of robust limit analysis problems
with a specific emphasis on the case of loading uncertainties and the corresponding
affinely adjustable robust formulations; finally, Sect. 5 draws some conclusions and
perspectives for future research.

2 Robust Limit Analysis with Strength Uncertainties

2.1 Nominal and Uncertain Limit Analysis Problem

The nominal limit analysis problem amounts to computing the maximum load factor
λN by solving the following convex maximization problem:

λN = max
λ,σ

λ

s.t. ÷σ + λ f r + f f = 0 in Ω

σ · n = λt r + t f on ∂ΩT

σ ∈ G in Ω

(N)

where λ is the load factor, σ the Cauchy stress field in Ω , f r (resp. f f) is the
reference (resp. fixed) body force, t r (resp. t f) the reference (resp. fixed) contact force
prescribed on somepart∂ΩT of the boundarywith unit normal n andG is thematerial
yield/strength criterion which we assume to be a convex set (possibly unbounded)
containing 0. In the above, the first two constraints correspond to the local balance
equation and traction boundary conditions, whereas the last one corresponds to the
strength condition which must be satisfied at all points x ∈ Ω . Note that formulation
(N) corresponds to a static formulation which will result in a lower-bound estimate
of the true collapse load when restricting to a finite-element subspace of statically
admissible stress fields.

We nowconsider the casewhere the loading is certain but thematerialmay possess
uncertain properties such that the strength criterion is now written as G(ζ) where
ζ ∈ R

m is a vector of uncertain parameters. Contrary to probabilistic approaches in
whichζ is a randomvariablewith a givenprobability distribution, robust optimization
approaches describe the uncertainty through the notion of an uncertainty set U ⊆
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R
m . It is assumed that any possible realization of the uncertainty belongs to the

uncertainty setζ ∈ U without positing any probability distribution. The goal of robust
optimization theory is to find an optimum solution to an uncertain optimization
problem for any possible realization in this uncertainty set. Obviously, the choice of
the uncertainty set is an important modeling step in such approaches and depends on
our knowledge of the origins of the considered uncertainty. If probability distributions
are known, uncertainty sets can be based on the size of the support or the shape of the
probability distribution. For instance, its size can correspond to a certain confidence
level of the probability distribution. It can also be built from available data.

This aspect is outside the scope of the present work, which presents a general
methodology. One key assumption on the uncertainty used to obtain interesting
results is that it is assumed to be convex. Although it can be more general, we
assume, for simplicity, that U is a convex ball of unit radius for some norm i.e.
U = {ζ ∈ R

m s.t. ‖ζ‖ ≤ 1}. In particular, we will note by Up uncertainty sets corre-
sponding to the L p-ball (typically with p = 1, 2 or ∞).

The maximum load factor now becomes uncertain i.e. it depends on the value ζ
of the uncertainty realization:

λ+(ζ) = max
λ,σ

λ

s.t. ÷σ + λ f r + f f = 0
σ · n = λt r + t f

σ ∈ G(ζ)

(1)

The main purpose of robust optimization is to provide worst-case solutions to a
given optimization problem. Our proposed theory of robust limit analysis therefore
aims at evaluating the worst-case limit load among all possible realizations. In the
remaining of this section, we discuss various robust formulations.

2.2 Adjustable Robust Optimization

For a given loading and twodifferent given realizations of the uncertainty, one expects
that the corresponding optimal stress fields will be different depending on the uncer-
tainty realizations. The most natural approach therefore consists in considering the
stress field and the corresponding load factor to be recourse variables, i.e. variables
which depends on ζ. Thus, we are facedwith an adjustable robust counterpart (ARC)
to problem (1) defined as follows:

λARC = min
ζ∈U

λ+(ζ) = min
ζ∈U

max
σ(ζ),λ(ζ)

λ(ζ)

s.t. ÷σ(ζ) + λ(ζ) f r + f f = 0
σ(ζ) · n = λ(ζ)t r + t f

σ(ζ) ∈ G(ζ)

(ARC)
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i.e. we find the largest load factor such that, for each uncertainty realization there
exists an optimal stress field in equilibrium, with the corresponding collapse load
factor, satisfying the strength criterion.

In the following, we also make use of the following equivalent formulation of the
ARC problem [18, 24]:

λARC = max
λ̄

λ̄

s.t. ∀ζ ∈ U , ∃σ,λ s.t. ÷σ + λ f r + f f = 0
σ · n = λt r + t f

σ ∈ G(ζ)

λ̄ ≤ λ

(2)

where uncertainty of the objective function has been transferred to the constraints
with the introduction of a static (non-adjustable) variable λ̄.

2.3 Static Robust Optimization

Unfortunately, adjustable recourse problems are numerically challenging. Indeed,
both formulations involve either a min/max problem (ARC) or an infinite number of
constraints (2). To solve adjustable recourse problem, one typically makes a simpli-
fying assumption on how recourse variables depend on the uncertainty, the so-called
decision rules.

Themost simple of such rules is to assume that recourse variables are in fact static,
i.e. they do not depend on the uncertainty. This yields to a conservative static robust
counterpart (RC) inwhichwe look for a stress fieldσ and a load factorλ, independent
of the exact realization of the uncertainty, which satisfy the strength condition G(ζ)

for all ζ ∈ U . The corresponding problem can be formulated as follows:

λRC = max
λ,σ

λ

s.t. ÷σ + λ f r + f f = 0
σ · n = λt r + t f

σ ∈ G(ζ) ∀ζ ∈ U
(3)

What makes problem (3) a robust optimization problem is the condition ∀ζ ∈ U
in the last constraint. This implies that the constraint σ ∈ G(ζ) must be fulfilled for
any possible value of ζ ∈ U . It is therefore an infinite-dimensional constraint. One
of the main goals of robust optimization theory is to make such a problem tractable
using standard convex optimization algorithms.

For instance, the robust constraint can be reformulated as:

σ ∈ G(ζ) ∀ζ ∈ U ⇔ σ ∈ GRC (4)
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Fig. 1 Robust strength domain GRC (in blue) obtained as the intersection of various uncertain
realizations G(ζ) (in black) of a nominal domain (in red)

when introducing:
GRC =

⋂

ζ∈U
G(ζ) (5)

the robust counterpart to the uncertain strength criterion. In order for a stress field
to be admissible with respect to any possible realization of the uncertain strength
criterion G(ζ), it has to belong to the intersection of all such domains (see Fig. 1).

Now, problem (3) writes as:

λRC = max
λ,σ

λ

s.t. ÷σ + λ f r + f f = 0
σ · n = λt r + t f

σ ∈ GRC

(RC)

which is now independent of the uncertainty realization. As a result, problem (RC) is
a classical limit analysis problemwith a different strength criterion given by (5). This
makes problem (RC) very appealing provided that a simple expression for GRC can
be found. It is however very hard to determine a simple expression for the infinite-
dimensional set intersection appearing in (5). Exact or approximate reformulation of
strength criteria robust counterparts are discussed in Sect. 3.
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2.4 Affinely Adjustable Robust Optimization

Unfortunately, if (RC) problems are numerically tractable, the obtained approxi-
mation might be unreasonably conservative [8]. A middle ground is the affinely
adjustable robust counterpart (AARC), which consists in looking for adjustable
variables σ(ζ) and λ(ζ) that are affine functions of the uncertain variable, the so-
called affine decision rule [6]:

σ(ζ) = σ0 +
m∑

j=1

σ jζ j (6a)

λ(ζ) = λ0 +
m∑

j=1

λ jζ j (6b)

where the σi (resp. λi ) represent 1 + m different stress fields (load factor variables)
which are now static optimization variables. Inserting the affine decision rules (6a)–
(6b) into (ARC), the corresponding AARC reads:

λAARC = max
σi ,λi

min
ζ∈U

λ0 +
m∑

j=1

λ jζ j

s.t. ÷
⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ +
⎛

⎝λ0 +
m∑

j=1

λ jζ j

⎞

⎠ f r + f f = 0

⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ · n =
⎛

⎝λ0 +
m∑

j=1

λ jζ j

⎞

⎠ t r + t f

⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ ∈ G(ζ)

(7)

which can also be reformulated as follows:

λAARC = max
λ̄,σi ,λi

λ̄

s.t. ÷(σ j ) + λ j f
r + f f = 0 ∀ j = 0, . . . ,m

σ j · n = λ j t r + t f ∀ j = 0, . . . ,m⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ ∈ G(ζ) ∀ζ ∈ U

λ̄ ≤ λ0 +
m∑

j=1

λ jζ j ∀ζ ∈ U

(AARC)
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in which we removed the uncertainty from the objective function and replaced the
minimization over ζ with robust constraints. Note that equality constraints depending
on ζ have been re-expressed by identifying the corresponding terms of the expansion
in terms of ζi since U is full dimensional.

2.5 Comparison Between the Different Approaches

Summarizing, (RC) is the most conservative formulation yielding the smallest limit
load. (AARC) is more flexible since it considers additional static variables σ j ,λ j

for j = 1, . . . ,m and reduces to (RC) if we fix all σ j = 0. As mentioned, (ARC) is
less conservative than (AARC) since we allow for more general decision rules but
is generally untractable. Finally, all of these formulations guard against all possible
realizations of the uncertainty such that we have the following ordering:

λRC ≤ λAARC ≤ λARC ≤ λ+(ζ) ∀ζ ∈ U (8)

In the remainder of this work, the focus is put on the tractability of the different
formulations. For (RC) to be tractable, the characterization of the safe domain GRC

must be tractable. Section3 discusses conditions for which exact or approximate
tractable formulations can be obtained. Tractable formulations of (AARC) are then
discussed in Sect. 4.

3 Robust Strength Conditions

3.1 Uncertain Strength Conditions and a Tractable
Approximation

Tractability of robust formulations such as (AARC) is essentially driven by how the
uncertain strength criterion G depends on ζ. Unfortunately, we are not aware of any
general results. However, in most applications, such uncertain constraints can be
written in the following form:

g(σ + Σζ) ≤ 1 − bTζ, ∀ζ ∈ U (9)

with σ ∈ R
d ,Σ ∈ R

d×m , d being the dimension of the stress space, b ∈ R
m and g

is a convex homogeneous function.

Exact reformulations of such a constraint are possible only ifG orU is polyhedral.
In the general case, one can benefit from the following safe approximation due to
[9]: the robust constraint (9) can be safely approximated as follows:
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g(σ) + ‖s‖∗ ≤ 1 (10)

where ‖ · ‖∗ is the dual norm of ‖ · ‖ defined as:

‖z‖∗ = sup
‖x‖≤1

zTx (11)

and where for j = 1, . . . ,m:

s j = max{g(Σ j ) + b j , g(−Σ j ) − b j } (12)

with Σ j denoting the j-th column of Σ .

3.2 Illustrative Application on a Robust Mohr-Coulomb
Criterion

Let us consider the case of a Mohr-Coulomb strength criterion where the cohesion
c and the friction angle φ are uncertain. A negative correlation is often encountered
between both parameters, i.e. soils with low cohesion tend to exhibit higher friction
angles than with higher cohesion.We denote by ρ the correlation coefficient between
c andφ, with typical values ranging from−0.5 to−0.9 [27]. Let us therefore consider
that k = (c,φ) is given by:

k(ζ) = k0 + Kζ, for ζ ∈ U (13)

where k0 corresponds to the nominal values and where the “correlation” matrix K
is such that:

K KT =
[

Δc2 ρΔcΔφ
ρΔcΔφ Δφ2

]
i.e. K =

[
Δc 0
ρΔφ Δφ

√
1 − ρ2

]
(14)

where Δc,Δφ are the parameters typical variations and are assumed to be positive.
Note that if such variationswere taken as the standard deviations of the corresponding
parameters, K KT would be the corresponding covariance matrix.

Figure2a illustrates the corresponding uncertainty sets obtained in the case c = 1
MPa,φ0 = 30◦,Δc = 150 kPa,Δφ = 5◦, ρ = 0 and for various choices for the norm
involved in the definition of U , resulting in a corresponding L1 (diamond shape), L2

(elliptic shape) or L∞ (rectangular shape) ball in physical space. Figure2b shows the
same uncertainty sets in the case of a negative correlation ρ = −0.5 which results in
similar polyhedral or elliptic sets skewed along the negative diagonal which encodes
the negative correlation coefficient. Let us point out that the previous choices for
the uncertainty set result in simple convex set but more complex sets could also
be considered, based for instance on available data regarding cohesion and friction
angle pairs.
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Fig. 2 Uncertainty sets of cohesion and friction angles for c = 1 MPa, φ0 = 30◦, Δc = 150 kPa,
Δφ = 5◦ for various sets Up corresponding to a L p unit ball

The robust counterpart of the Coulomb criterion therefore reads:

σ1 − σ3 + (σ1 + σ3) sin φ(ζ) − 2c(ζ) cosφ(ζ) ≤ 0 ∀ζ ∈ U (15)

where σ1 (resp. σ3) is the maximum (resp. minimum) principal stress.

Assuming that the variationsΔc,Δφ are small, linearization around k0 results in:

σ1 − σ3 + (σ1 + σ3)(sin φ0 + cos(φ0)(K21ζ1 + K22ζ2))

− 2(c0 + K11ζ1) cosφ0

+ 2c0 sin φ0(K21ζ1 + K22ζ2) ≤ 0 ∀ζ ∈ U (16)

with Ki j being the components of K defined in (14).
This yields the following robust counterpart:

σ1 − σ3 + (σ1 + σ3) sin φ0 − 2c0 cosφ0 + ‖s‖∗ ≤ 0 (17)

where:

s =
(| ((σ1 + σ3) cosφ0 + 2c0 sin φ0) ρΔφ − 2Δc cosφ0|

|(σ1 + σ3) cos(φ0) + 2c0 sin φ0|
√
1 − ρ2Δφ

)
(18)

Let us now investigate the simple case of no cross-correlation ρ = 0 with U =
{(ζ1, ζ2) s.t. ‖ζ‖∞ ≤ 1}. The previous expression reduces to:

s =
(

2Δc cosφ0

((σ1 + σ3) cos(φ0) + 2c0 sin φ0) Δφ

)
(19)

‖s‖∗ = ‖s‖1 = 2Δc cosφ0 + |(σ1 + σ3) cos(φ0) + 2c0 sin φ0| Δφ (20)
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so that the robust Mohr-Coulomb criterion (17) reduces to:

σ1 − σ3 + (σ1 + σ3) sin φ0

+ |(σ1 + σ3) cos(φ0) + 2c0 sin φ0| Δφ ≤ 2(c0 − Δc) cosφ0 (21)

which can be further expressed as follows:

{
σ1 − σ3 + (σ1 + σ3)(sin φ0 + cos(φ0)Δφ) ≤ 2cmin cosφ0 − 2c0 sin φ0Δφ

σ1 − σ3 + (σ1 + σ3)(sin φ0 − cos(φ0)Δφ) ≤ 2cmin cosφ0 + 2c0 sin φ0Δφ

(22)
where cmin = c0 − Δc is the worst-case cohesion. Introducing φmin = φ0 − Δφ
the worst-case friction angle and φmax = φ0 + Δφ the best-case friction angle
and using the fact that sin(φmax/min) ≈ sin φ0 ± cos(φ0)Δφ and cos(φmax/min) ≈
cosφ0 ∓ sin(φ0)Δφ, the previous criterion is, in fact, a first-order approximation
(in terms of Δc,Δφ) to the following multi-surface criterion:

{
σ1 − σ3 + (σ1 + σ3) sin φmax ≤ 2cmin cos(φmax)

σ1 − σ3 + (σ1 + σ3) sin φmin ≤ 2cmin cos(φmin)
(23)

i.e. the obtained robust counterpart, for this specific case, (approximately) corre-
sponds to the intersection of two Coulomb criteria with the worst-case cohesion and
either the best or the worst-case friction angle. An illustration of such a result is given
in Fig. 3. The yield surface corresponding to random realizations of c(ζ) and φ(ζ)

are also represented. One can indeed see that the obtained robust strength criterion
forms a tight lower bound to the various realizations and is made of two sets of lines
approximately characterized by the minimum and maximum friction angle φmin and
φmax.

4 Solving Robust Limit Analysis Problems

4.1 Strength Uncertainty with Static Formulation

As discussed before, for a limit analysis problem with uncertain strength conditions,
we can replace the original uncertain strength criterion by its robust counterpart
when using a static decision rule for the stress field. This approximation is obviously
conservative and can provide reasonable estimates of the robust limit load only when
the uncertainty if of small amplitude so that the optimal stress field does not heavily
depend on the uncertainty realization, making static decision rules relevant.

In this case, the resulting robust limit analysis problem is equivalent to a classical
deterministic limit analysis problem in which the nominal strength criterion has been
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Fig. 3 Robust and uncertain
Mohr-Coulomb criterion:
c0 = 1 MPa, φ0 = 30◦,
Δc = 150 kPa, Δφ = 5◦.
Black dashed lines denote
the nominal surface, thin
coloured lines denote
random realizations of the
uncertain criterion. The
robust domain is represented
in gray and delimited by
thick black lines

replaced by a smaller robust strength criterion. For a concrete implementation, the
latter has to be formulated using tractable convex constraints.

As an illustration, we consider a slope stability problem for a cohesive-frictional
soil with uncertain values for the cohesion and friction angle (c = 1 ± 0.1 MPa and
φ = (30 ± 10)◦) for a pseudo-static earthquake loading f = (0.2g,−g). The cor-
responding load factor is interpreted here as the slope safety factor which should
be larger than 1 to guarantee stability. The problem numerical resolution relies on
a general-purpose domain-specific language (DSL), called fenics_optim, dedi-
cated to automating the formulation and resolution of convex variational problems
in a finite-element setting. The package is implemented as an add-on to the FEn-
iCS Python interface and enables to easily formulate convex optimization problems
using only a few lines of code and to discretize them in a very simple manner using
various finite-element interpolation spaces. Their numerical resolution is performed
efficiently using Mosek as the underlying conic programming solver [20]. More
details regarding the package can be found in [11, 12] for its specific usage in the
context of limit analysis.

Figure4 represents the empirical distribution of the slope safety factor obtained
for 200 random realizations of the material parameters. The nominal safety factor is
slightly larger than 3 whereas the robust estimate is slightly less than 2 and indeed
corresponds to the lower bound of the empirical distribution. This figure illustrates
the advantage of using a robust formulation since, instead of running 200 LA com-
putations, one is able to obtain an accurate estimate of the left part of the empirical
distribution tail with a single computation. In this present case, only two uncertain
parameters have been considered but the approach can be extended to a larger number
of parameters. A typical example would be the modeling of soil spatial variability



Robust Optimization Applied to Uncertain Limit Analysis 237

Fig. 4 Empirical distribution of the slope stability safety factor. The vertical black and red lines
correspond to a single deterministic limit analysis with either nominal strength properties or using
the corresponding robust strength condition

using random fields for instance. Besides, it can also be noted that the obtained esti-
mate is not too conservative since a non-negligible number of uncertainty realizations
are associated with a safety factor close to this robust estimate. Finally, it has to be
pointed out that the variability on the friction angle induces a large variability on
the obtained safety factor, explaining the difference between a nominal factor of 3
and a robust estimate around 2. This observation is further confirmed by the shape
of the collapse mechanisms represented in Fig. 5. In the robust case, the collapse
mechanism involves a much larger volume of soil than the nominal case since the
most critical scenario corresponds to a smaller friction angle. Estimating the amount
of soil mass mobilized during slope failure is an important point when assessing the

Fig. 5 Collapse mechanism and concentrated dissipation in slip lines for the nominal and robust
case
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stability of a slope and its potential of damage in case of failure. Again, one can
see that robust limit analysis computations can also be used to obtain a worst-case
estimate of such a mobilized soil mass when accounting for uncertainty on the soil
material parameters.

4.2 Loading Uncertainties

Similarly to [16, 19], we assume here that the fixed distributed and surface loadings
f f, t f are uncertain andvary, around anominal value, inside a convex set. In particular,
we consider that the reference loadings f r, t r are deterministic. Assuming them to
be uncertain adds another layer of difficulty due to the fact that the loading direction
along which one has to optimize depends on the uncertainty realization. This specific
case will be left for a future contribution.

Without loss of generality, we characterize the uncertain variation of the fixed
loadings as follows:

f f(ζ) = f f0 +
m∑

j=1

f fjζ j = f f0 + Ffζ (24a)

t f(ζ) = t f0 +
m∑

j=1

t fjζ j = t f0 + T fζ (24b)

where we introduced the matrices Ff = [( f fj ) j=1,...,m] and T f = [(t fj ) j=1,...,m] and
where ζ ∈ U with U a given convex uncertainty set. The corresponding uncertain
limit analysis problem therefore reads:

λ+(ζ) = max
λ,σ

λ

s.t. ÷σ + λ f r + f f0 + Ffζ = 0
σ · n = λt r + t f0 + T fζ
σ ∈ G

(25)

4.3 Robust Counterpart

Clearly, for this load uncertainty case, the use of static decision rules is doomed to
fail since one cannot expect finding, except in very specific cases, a single stress field
which is statically admissible with any realization of the uncertain loading (24). One
must therefore resort to an adjustable robust optimization which, similarly to (2),
reads:
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λARC = max
λ̄

λ̄

s.t. ∀ζ ∈ U , ∃σ,λ s.t. ÷σ + λ f r + f f0 + Ffζ = 0
σ · n = λt r + t f0 + T fζ
σ ∈ G
λ̄ ≤ λ

(26)

Again, in order to obtain a safe and tractable approximation to the above robust
formulation, we resort to the use of the affine decision rules (6) and obtain the
following AARC:

λAARC = max
σi ,λi

min
ζ∈U

λ0 +
m∑

j=1

λ jζ j

s.t. ÷
⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ +
⎛

⎝λ0 +
m∑

j=1

λ jζ j

⎞

⎠ f r + f f0 + Ffζ = 0

⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ · n =
⎛

⎝λ0 +
m∑

j=1

λ jζ j

⎞

⎠ t r + t f0 + T fζ

⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ ∈ G

(27)
which can be further formulated as follows:

λAARC = max
λ̄,σi ,λi

λ̄

s.t. ÷(σi ) + λi f
r + f fi = 0 ∀i = 0, . . . ,m

σi · n = λi t r + t fi ∀i = 0, . . . ,m⎛

⎝σ0 +
m∑

j=1

σ jζ j

⎞

⎠ ∈ G ∀ζ ∈ U

λ̄ ≤ λ0 +
m∑

j=1

λ jζ j ∀ζ ∈ U

(28)

Clearly, (28) bears striking similarities with (AARC) in the sense that we look
for 1 + m stress fields statically admissible with a given loading (here we have an
additional fixed loading for each j = 1, . . . ,m compared to (AARC)). In particular,
uncertainty has been removed from the equilibrium equations whereas only the last
two constraints are robust ones which must be reformulated. In particular, the robust
strength constraint can be reformulated, either exactly or approximately, using the
results of Sect. 3. Finally, the last constraint can be reformulated as follows using
the dual norm ‖ · ‖∗ to the norm involved in the definition of the uncertainty set U .
Indeed, introducing the vector Λ = (λ j ) j=1,...,m , we can write:
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λ̄ ≤ λ0 + ΛTζ ∀ζ ∈ U
⇔ λ̄ + max

ζ∈U
{−ΛTζ} ≤ λ0 (29)

⇔ λ̄ + ‖−Λ‖∗ ≤ λ0

which results in a tractable convex constraint for classical uncertainty sets.
In conclusion, we see that the robust reformulation of (28) is close to a classi-

cal limit analysis problem except that the number of stress fields and load factor is
now 1 + m and that the strength criterion will couple all stress variables in a single
constraint which would have been exactly or approximately reformulated to guaran-
tee the robust constraint σ0 + ∑m

j=1 σ jζ j ∈ G, ∀ζ ∈ U . As a result, the resulting
robust problem will still be convex and representable using conic constraints. It will
however be much larger in size than a deterministic problem.

5 Conclusions

In this work, we have proposed an extension of limit analysis theory to an uncertain
setting using the robust optimization (RO) framework. Since limit analysis problems
can be formulated as convex optimization programs, we can naturally apply robust
optimization concepts when considering uncertain data. We covered two different
sources of uncertainty, namely strength and loading uncertainty.

An important aspect of RO is related to the use of static or adjustable optimization
variables. In the present LA case, it amounts to deciding whether we consider the
stress field and load multiplier that we optimize for to be independent or depen-
dent on the uncertain parameters. The main feature of RO is to propose tractable
reformulations of uncertain constraints as standard deterministic constraints, possi-
bly involving a much larger number of variables. Various results have been obtained
for the two cases of static and adjustable formulations.

First, the use of static variables results in the static robust counterpart (RC) which
deserves the following comments:

• (RC) is a standard deterministic LA problemwhere the uncertain strength criterion
is replaced with a safe estimate called the robust strength domain GRC.

• The robust strength domain is the smallest possible strength domain corresponding
to all uncertainty realizations.

• Obtaining an explicit expression for the robust domain depends on how constraints
depend on the uncertain parameters.

• Tractable approximations of the robust domain have been provided and illustrated
on the case of a Mohr-Coulomb example.

• The resulting LA problem can be solved using standard tools and the resulting
load estimate is a conservative safe approximation for all realization.

Clearly, this is a very conservative approach. In particular, finding such a stress field
is not always possible. Our experience suggests that static formulations can be used
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only when considering strength uncertainty and in the case where this uncertainty
is of small amplitude. Intuitively, this corresponds to the fact that the collapse stress
field is only mildly perturbed by the realization of the uncertainty.

Second, in the general case where adjustable formulations are needed, simple
decision rules must be chosen for the robust problem to be tractable. In particular,
the case of loading uncertainty can only be tackled using adjustable formulations.
More precisely:

• Affine decision rules assume an affine dependence of the load factor and stress
field with respect to the uncertain parameters.

• Robust strength constraints take the form (9) which can be reformulated either
exactly or approximately.

• The corresponding affinely adjustable problem can be reformulated to yield the
deterministic optimization problem (AARC).

• The latter involves a much larger number of optimization variables compared to
the nominal limit analysis problem. This number depends on the dimension of the
uncertainty space.

Further research will focus on the numerical implementation of the proposed
formulations in order to assess their efficiency on more involved examples. In this
respect, specific strategies should probably be investigated in order to reduce the com-
putational cost of the corresponding large-scale optimization problems, especially
when considering AARC formulations. Analyzing such more advanced examples
would therefore shed light on the necessity, or not, of considering more complex
decision rules than affine rules such as piecewise-linear or nonlinear decision rules.
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